彈簧制成后經噴丸處理能使彈簧表層產生殘余壓應力,以抵銷表層上的部分工作應力,抑制表層裂縫的形成,這可提高彈簧的疲勞極限。 研究進展
傳統彈簧鋼的強度水平難以滿足現代工業發展的要求,眾所周知,彈簧鋼力學性能在材料質量的前提下取決于熱處理工藝,而熱處理工藝也應根據所用材料來決定,彈簧鋼高強度化的一個重要途徑是充分發揮合金元素的作用,達到合金化效果 熱處理彈簧鋼要求較高的強度和疲勞極限,一般在淬火+中溫回火的狀態下使用,以獲得較高的彈性極限。熱處理工藝技術對彈簧內在質量有著至關重要的影響。因此,進一步提高彈簧疲勞壽命,需進一步研究,尤其是化學表面改性熱處理、噴丸強化等都對彈簧疲勞壽命產生重要影響。為進一步強化氣門彈簧的表面強度、增加壓應力、提高疲勞壽命,氣門彈簧成形后,要進一步經過滲氮、低溫液體碳氮共滲或硫氮共滲處理,然后經噴丸強化。例如,日本將f4mm的si-cr油淬鋼絲經450℃×4.5h低溫體碳氮共滲與經400℃×15min中溫回火進行對比,其疲勞極限可提高240mpa。氮的滲入,不僅消除了脫碳的不良影響,而且還提高了殘余壓應力,同時經滲氮和低溫液體碳氮共滲的氣門彈簧高溫強度提高,150℃時的變形量為0.2%(規定值為0.5%),250℃的變形量為0.56%,提高了氣門彈簧的熱穩定性和抗松弛穩定性,但滲氮和液體碳氮共滲時間應嚴格控制,否則會形成網狀硫化物和網狀氮化物,反而會降低其疲勞強度。為了克服彈簧鋼強度提高后韌性和塑性降低的難題,也有降低碳含量的趨勢。我國對低碳馬氏體彈簧鋼進行了深入的研究